77 research outputs found

    Cost-minimization predictive energy management of a postal-delivery fuel cell electric vehicle with intelligent battery State-of-Charge Planner

    Full text link
    Fuel cell electric vehicles have earned substantial attentions in recent decades due to their high-efficiency and zero-emission features, while the high operating costs remain the major barrier towards their large-scale commercialization. In such context, this paper aims to devise an energy management strategy for an urban postal-delivery fuel cell electric vehicle for operating cost mitigation. First, a data-driven dual-loop spatial-domain battery state-of-charge reference estimator is designed to guide battery energy depletion, which is trained by real-world driving data collected in postal delivery missions. Then, a fuzzy C-means clustering enhanced Markov speed predictor is constructed to project the upcoming velocity. Lastly, combining the state-of-charge reference and the forecasted speed, a model predictive control-based cost-optimization energy management strategy is established to mitigate vehicle operating costs imposed by energy consumption and power-source degradations. Validation results have shown that 1) the proposed strategy could mitigate the operating cost by 4.43% and 7.30% in average versus benchmark strategies, denoting its superiority in term of cost-reduction and 2) the computation burden per step of the proposed strategy is averaged at 0.123ms, less than the sampling time interval 1s, proving its potential of real-time applications

    Design and control strategy of powertrain in hybrid electric vehicles

    No full text
    Depuis une dizaine d’années, les constructeurs et les grands groupesdu secteur de l’automobile se sont mobilisés autour de la recherche et dudéveloppement de nouveaux prototypes de véhicules économes (moins consommateursd’énergie) et propres (moins de rejets de polluants) tels queles véhicules hybrides et tout électriques. C’est une nouvelle mutation. Ellefait profondément évoluer l’automobile, d’une architecture de propulsionthermique, devenue maîtrisée mais fortement polluante, vers une tractionélectrique ou hybride plus complexe et peu, voire pas du tout, maîtrisée ;le nombre de composants (sources d’énergie, actionneurs, contrôleurs, calculateurs,...) devient important, de nature multidisciplinaire et possédantbeaucoup de non linéarités. De plus, faute de maturité dans ce domaine, àce jour l’industrie de l’automobile ne possède pas encore les connaissancessuffisantes nécessaires à la modélisation, à la simulation et à la conceptionde ces nouveaux véhicules et plus particulièrement les dispositifs relatifs auxsources d’énergie et aux différents actionneurs de propulsion.Les travaux de cette thèse visent à donner des méthodes de conceptiond’une chaine de traction hybride et d’en gérer la gestion de l’énergie. Lathèse s’appuie sur l’exemple de la conception et la gestion de l’énergie d’unvéhicule hybride basé sur une pile à combustible et des batteries.Dans un premier temps, un méthode de dimensionnement des composantsde la chaine de traction est présentée : Elle consiste en l’étude statistique decycle de conduite générés pseudo aléatoirement représentatif de la conduiteen condition réelle de véhicule. Un générateur de cycle de conduite à été créeet est présenté, et la méthode de dimensionnement de la source primaire, iciune pile a combustible, ainsi que le source secondaire de puissance, ici desbatteries, est détaillée. Un exemple est pris pour illustrer cette méthode avecla conception d’un véhicule de type camion poubelle décrivant des cycles deconduites urbains à arrêts fréquents.Dans un second temps, la gestion de l’énergie de la chaine de traction hybridesérie est étudiée : une gestion de l’énergie “offline” est présentée, basé surl’optimisation par programmation dynamique. Cette optimisation permetd’avoir le découpage de la puissance par les deux sources de la chaine detraction de manière optimal pour un cycle précis. De part l’aspect déterministede la programmation dynamique, les résultats servent de référence quant aufuturs développements de gestion temps réel.Un contrôleur temps réel basé sur la logique floue est ainsi exposé et lesrésultats sont comparés par rapport à la gestion “offline”. Le contrôleurest ensuite optimisé et rendu adaptatif par un algorithme génétique et unalgorithme de reconnaissance de type de profil routier.Enfin, une introduction à la gestion de l’énergie dans les véhicules hybrides de type : “plug in” est présentée : Elle repose sur le principe de la déterminationde la distance restante à parcourir par la reconnaissance de la destination àl’aide d’une matrice de probabilité de Markov.Hybrid electric vehicle have known a quickly grow in the last 10 years.Between conventional vehicles which are criticized for their CO2 emissionand electric vehicles which have a big issue about autonomy, hybrid electricones seems to be a good trade of. No standard has been set yet, and the architecturesresulting of theses productions vary between brands. Nevertheless,all of them are design as a thermal vehicle with battery added which leadsto bad sizing of the component, specially internal combustion engine andbattery capacity. Consequently, the control strategy applied to its componentshas a lot of constraints and cannot be optimal.This thesis investigate a new methodology to design and control a hybridelectric vehicle. Based on statistical description of driving cycle and the generationof random cycle, a new way of sizing component is presented. Thecontrol associate is then determined and apply for different scenarios : firstlya heavy vehicle : A truck and then a lightweight vehicle. An offline controlbased on the optimization of the power split via a dynamic programmingalgorithm is presented to get the optimal results for a given driving cycle.A real time control strategy is then define with its optimization for a givenpatterns and compared to the offline results. Finally, a new control of plug inhybrid electric vehicle based on destination predictions is presented

    Conception et gestion de l'énergie des architectures pour véhicules hybrides électriques

    No full text
    Hybrid electric vehicle have known a quickly grow in the last 10 years.Between conventional vehicles which are criticized for their CO2 emissionand electric vehicles which have a big issue about autonomy, hybrid electricones seems to be a good trade of. No standard has been set yet, and the architecturesresulting of theses productions vary between brands. Nevertheless,all of them are design as a thermal vehicle with battery added which leadsto bad sizing of the component, specially internal combustion engine andbattery capacity. Consequently, the control strategy applied to its componentshas a lot of constraints and cannot be optimal.This thesis investigate a new methodology to design and control a hybridelectric vehicle. Based on statistical description of driving cycle and the generationof random cycle, a new way of sizing component is presented. Thecontrol associate is then determined and apply for different scenarios : firstlya heavy vehicle : A truck and then a lightweight vehicle. An offline controlbased on the optimization of the power split via a dynamic programmingalgorithm is presented to get the optimal results for a given driving cycle.A real time control strategy is then define with its optimization for a givenpatterns and compared to the offline results. Finally, a new control of plug inhybrid electric vehicle based on destination predictions is presented.Depuis une dizaine d’années, les constructeurs et les grands groupesdu secteur de l’automobile se sont mobilisés autour de la recherche et dudéveloppement de nouveaux prototypes de véhicules économes (moins consommateursd’énergie) et propres (moins de rejets de polluants) tels queles véhicules hybrides et tout électriques. C’est une nouvelle mutation. Ellefait profondément évoluer l’automobile, d’une architecture de propulsionthermique, devenue maîtrisée mais fortement polluante, vers une tractionélectrique ou hybride plus complexe et peu, voire pas du tout, maîtrisée ;le nombre de composants (sources d’énergie, actionneurs, contrôleurs, calculateurs,...) devient important, de nature multidisciplinaire et possédantbeaucoup de non linéarités. De plus, faute de maturité dans ce domaine, àce jour l’industrie de l’automobile ne possède pas encore les connaissancessuffisantes nécessaires à la modélisation, à la simulation et à la conceptionde ces nouveaux véhicules et plus particulièrement les dispositifs relatifs auxsources d’énergie et aux différents actionneurs de propulsion.Les travaux de cette thèse visent à donner des méthodes de conceptiond’une chaine de traction hybride et d’en gérer la gestion de l’énergie. Lathèse s’appuie sur l’exemple de la conception et la gestion de l’énergie d’unvéhicule hybride basé sur une pile à combustible et des batteries.Dans un premier temps, un méthode de dimensionnement des composantsde la chaine de traction est présentée : Elle consiste en l’étude statistique decycle de conduite générés pseudo aléatoirement représentatif de la conduiteen condition réelle de véhicule. Un générateur de cycle de conduite à été créeet est présenté, et la méthode de dimensionnement de la source primaire, iciune pile a combustible, ainsi que le source secondaire de puissance, ici desbatteries, est détaillée. Un exemple est pris pour illustrer cette méthode avecla conception d’un véhicule de type camion poubelle décrivant des cycles deconduites urbains à arrêts fréquents.Dans un second temps, la gestion de l’énergie de la chaine de traction hybridesérie est étudiée : une gestion de l’énergie “offline” est présentée, basé surl’optimisation par programmation dynamique. Cette optimisation permetd’avoir le découpage de la puissance par les deux sources de la chaine detraction de manière optimal pour un cycle précis. De part l’aspect déterministede la programmation dynamique, les résultats servent de référence quant aufuturs développements de gestion temps réel.Un contrôleur temps réel basé sur la logique floue est ainsi exposé et lesrésultats sont comparés par rapport à la gestion “offline”. Le contrôleurest ensuite optimisé et rendu adaptatif par un algorithme génétique et unalgorithme de reconnaissance de type de profil routier.Enfin, une introduction à la gestion de l’énergie dans les véhicules hybrides de type : “plug in” est présentée : Elle repose sur le principe de la déterminationde la distance restante à parcourir par la reconnaissance de la destination àl’aide d’une matrice de probabilité de Markov

    Review and analysis of algorithms for the driving condition prediction and its applications

    No full text
    International audienceAs the fundamental of predictive energy management strategies (PEMSs) for Hybrid Electric Vehicles (HEV), the route prediction accuracy has significant effects on the performance of the corresponding PEMSs, i.e. fuel economy. This paper presents a comprehensive review on the existing prediction algorithms for future driving conditions (FDCs). In the first part, a novel classification of existing energy management strategies (EMS) for HEVs is proposed. And then, the review on existing of FDCs prediction method is carried out. Finally, these prediction methods are classified and their advantages and disadvantages are compared and summarized. Generally speaking, this paper not only conducts a comprehensive analysis and review on existing prediction algorithms but also summarizes their own characteristics, which will help prospective researchers to choose appropriateapproaches to seek further performance gaining of PEMSs

    A Velocity Prediction Method based on Self-Learning Multi-Step Markov Chain

    No full text
    International audienceThis paper presents a vehicle speed prediction method based on the self-learning multi-step Markov Chain. By estimating the transition probability matrices with the online measured data, the proposed method can better adapt to the novel driving conditions. Through three representative case studies, its effectiveness and the advantages over the conventional Markov predictor under multiple driving scenarios are verified. Simulation results show that in dealing with the newly encountered driving conditions, the proposed approach can reduce the average prediction error by 25.70% compared to the conventional Markov predictor. Besides, the maximum online computation time of the proposed method is 7.021ms, indicating its real-time practicality

    Control strategy of fuel cell electric vehicle including degradation process

    No full text
    This paper proposes an energy management for fuelcell electric vehicle taking into account the fuel cell degradationduring its lifetime. The aim of the study is to design a controlstrategy which manage a power converter in order to use the fuelcell system as a range extender by preventing the batteries stateof charge to drop too quickly. The presented controller use bothbatteries state of charge and fuel cell degradation estimation tocontrol the fuel cell power

    Real-time cost-minimization power-allocating strategy via model predictive control for fuel cell hybrid electric vehicles

    No full text
    International audienceFuel cell electric vehicles are widely deemed as the promising technology in sustainable transportation field, yet the high ownership cost makes them far from competitive in contemporary auto market. To maximize the economic potential of fuel cell/battery-based hybrid electric vehicles, this paper proposes a real-time cost-minimization energy management strategy to mitigate the vehicle’s operating cost. Specifically, the proposed strategy is realized via model predictive control, wherein both hydrogen consumption and energy source degradations are incorporated in the multi-objective cost function. Assisted by the forecasted speed, dynamic programming is leveraged to derive the optimal power-splitting decision over each receding horizon. Thereafter, the performance discrepancy of the proposed strategy is analyzed under different affecting factors, including battery state-of-charge regulation coefficient, discrete resolution of optimization solver, speed prediction approaches and length of prediction horizon. Lastly, a comparative study is conducted to validate the effectiveness of the proposed strategy, where the proposed strategy can respectively reduce the operating cost and prolong the fuel cell lifetime by 14.17% and 8.48% in average versus a rule-based benchmark. Moreover, the online computation time per step of the proposed strategy is averaged at 266.26 ms, less than the sampling time interval 1 s, thereby verifying its real-time practicality

    Multi-objective energy management for fuel cell electric vehicles using online-learning enhanced Markov speed predictor

    No full text
    International audienceAs one of promising solutions towards future cleaner transportation, fuel cell electric vehicles have been widely regarded as an attractive technology in both academia and industry. To enhance the vehicle’s operation efficiency, this paper proposes a multi-criteria power allocation strategy for a fuel cell/battery-based plug-in hybrid electric vehicle. Firstly, an adaptive online-learning enhanced Markov velocity-forecast approach is proposed. Its predictive behaviors can be adjusted accordingly under various driving scenarios through the real-time-identified transition probability matrices. Subsequently, based only on the previewed trip duration information and the speed prediction results, a state-of-charge (SOC) reference planning approach is designed to guide the allocation of battery energy. Combining with the velocity-forecast results and the reference SoC, model predictive control derives the optimal power-allocation decision through minimizing the multi-purpose objective function in a finite time horizon. It has been verified that (1) the presented power allocation strategy can reduce over 12.05% H2 consumption and over 94.40% fuel cell power spikes against the commonly used Charge-Depleting/Charge-Sustaining strategy; (2) despite the existence of mission time estimation errors, the presented control strategy could still bring performance enhancement over the benchmark strategy, thus demonstrating its feasibility for real-world implementations

    A survey on driving prediction techniques for predictive energy management of plug-in hybrid electric vehicles

    No full text
    International audienceDriving prediction techniques (DPTs) are used to forecast the distributions of various future driving conditions (FDC), like velocity, acceleration, driver behaviors etc. and the quality of prediction results has great impacts on the performance of corresponding predictive energy management strategies (PEMSs), e.g., fuel economy (FE), lifetime of battery etc. This survey presents a comprehensive study on existing DPTs. Firstly, a review on prediction objectives and major types of prediction algorithms are presented. Then a comparative study on various prediction approaches is carried out and suitable application scenarios for each approach are provided according to their characteristics. Moreover, prediction accuracy-affecting factors are analyzed and corresponding approaches for dealing with mis-predictions are discussed in detail. Finally, the bottlenecks of current researches and future developing trends of DPTs are given. In general, this paper not only gives a comprehensive analysis and review of existing DPTs but also indicates suitable application scenarios for each prediction algorithm and summarizes potential approaches for handling the prediction inaccuracies, which will help prospective designers to select proper DPTs according to different applications and contribute to the further performance enhancements of PEMSs for hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs)

    Intelligent Control and Smart Energy Management - Renewable Resources and Transportation

    No full text
    International audience<div style=""&gt<font face="arial, helvetica"&gt<span style="font-size: 13px;"&gtFuel cells are gradually becoming the competitive alternative to conventional internal combustion engines due to their high system efficiency and zero-local-emission property. Nevertheless, the high manufacturing cost and the limited lifetime of fuel cell systems still remain the major barrier towards the massive promotion of fuel cell electric vehicles. To reduce the vehicle’s operating cost, reliable energy management strategies should be devised to coordinate the outputs of multiple energy sources in hybrid powertrain.</span&gt</font&gt</div&gt<div style=""&gt<font face="arial, helvetica"&gt<span style="font-size: 13px;"&gtThis chapter intends to present the development of predictive energy management strategy for fuel cell hybrid electric vehicles, especially focusing on the possibility of combining the driving predictive information with the real-time optimization framework. To this end, two driving prediction techniques are proposed, namely a vehicle speed forecasting approach and a driving pattern recognition method. Thereafter, model predictive control is adopted for real-time decision-making with the assistance of the predicted information. Validation results indicate that the proposed control strategy outperforms the benchmark control strategies in terms of fuel economy and fuel cell durability, thereby verifying the control performance improvement imposed by driving prediction integration.</span&gt</font&gt</div&g
    • …
    corecore